An Approximate Dynamic Programming Approach for Dual Stochastic Model Predictive Control

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Dynamic Programming Strategy for Dual Adaptive Control

An approximate dynamic programming (ADP) strategy for a dual adaptive control problem is presented. An optimal control policy of a dual adaptive control problem can be derived by solving a stochastic dynamic programming problem, which is computationally intractable using conventional solution methods that involve sampling of a complete hyperstate space. To solve the problem in a computationally...

متن کامل

An Approximate Dynamic Programming Approach to Decentralized Control of Stochastic Systems

In this paper we consider the problem of computing decentralized control policies for stochastic systems with finite state and action spaces. Synthesis of optimal decentralized policies for such problems is known to be NP-hard [15]. Here we focus on methods for efficiently computing meaningful suboptimal decentralized control policies. The algorithms we present here are based on approximation o...

متن کامل

From robust model predictive control to stochastic optimal control and approximate dynamic programming: A perspective gained from a personal journey

Developments in robust model predictive control are reviewed from a perspective gained through a personal involvement in the research area during the past two decades. Various min–max MPC formulations are discussed in the setting of optimizing the “worst-case” performance in closed loop. One of the insights gained is that the conventional open-loop formulation of MPC is fundamentally flawed to ...

متن کامل

Stochastic Dual Dynamic Integer Programming

Multistage stochastic integer programming (MSIP) combines the difficulty of uncertainty, dynamics, and non-convexity, and constitutes a class of extremely challenging problems. A common formulation for these problems is a dynamic programming formulation involving nested cost-to-go functions. In the linear setting, the cost-to-go functions are convex polyhedral, and decomposition algorithms, suc...

متن کامل

Approximate Dynamic Programming by Linear Programming for Stochastic Scheduling

In stochastic scheduling, we want to allocate a limited amount of resources to a set of jobs that need to be serviced. Unlike in deterministic scheduling, however, the parameters of the system may be stochastic. For example, the time it takes to process a job may be subject to random fluctuations. Stochastic scheduling problems occur in a variety of practical situations, such as manufacturing, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC-PapersOnLine

سال: 2020

ISSN: 2405-8963

DOI: 10.1016/j.ifacol.2020.12.2280